
Distributed Object Storage Rebuild Analysis
via Simulation with GOBS

Justin M. Wozniak
MCS Division

Argonne National Laboratory
Argonne, IL, USA

wozniak@mcs.anl.gov

Seung Woo Son
MCS Division

Argonne National Laboratory
Argonne, IL, USA
sson@mcs.anl.gov

Robert Ross
MCS Division

Argonne National Laboratory
Argonne, IL, USA
rross@mcs.anl.gov

Abstract

Community acceptance of the object storage device
model as represented by standards and use in existing HPC
filesystems has enabled the development of more complex
data storage systems. Object replicas may be placed in a
variety of ways to obtain various properties, such as scal-
able lookup times, concurrent access to multiple objects,
and efficient reorganization. The construction of a fully
functional object-based parallel filesystem is an enormous
effort, so evaluation of potential techniques and algorithms
is typically performed by analysis or simulation. In this
work, we present an extensible simulator designed to eval-
uate multiple object placement models under fault-induced
rebuilds. We use results obtained by the simulator to weigh
the benefits of simple object replica placement models.

1 Introduction

Object-based storage systems form the basis of many
parallel and distributed filesystems in use and under devel-
opment today. A growing variety of schemes has been pro-
posed to place and locate objects on large storage systems
of up to 1,000 object servers. Beyond the challenges inher-
ent in the storage of ever-growing quantities of data, stor-
age systems designed for use by massively parallel filesys-
tems pose particular challenges for object storage place-
ment algorithms. Object placement algorithms approach the
problem of storage management as framed by multiple re-
quirements. The design evaluation of an object placement
scheme typically includes the lookup complexity, flexibil-
ity, and redundancy provided.

High-performance storage systems in the 2015-2018
timescale are expected to contain over 1,000 servers and
tens of thousands of disks, serving an exabyte of data or
more [8]. In practice, such a filesystem will nearly always

be in a state of rebuild because of a partial failure such as the
loss of a component hard disk. Consider an example 960 PB
storage system consisting of 32,000 disk drives, each at 30
TB. Using a responsible estimate of 10% disk mortality per
year [9], the system would unexpectedly retire an average
of 8.76 disks per day, containing 263 TB of redundant data.
Restoring the nominal level of redundancy would require a
perpetual network commitment of 3.125 GB/s. Here, we
use coarse-grained simulation to investigate the impact of
this quantity of rebuild work on the overall filesystem.

Traditional rebuild methods wait for the administrator to
insert a replacement disk, then restore the nominal redun-
dancy level by moving data to the new disk. This delay
in returning to the steady state expands thewindow of vul-
nerability [1] in which data loss may occur as a result of
subsequent faults. The window can be shortened by im-
proving rebuild times through the application of an aggres-
sive fault response in which disk space is dynamically allo-
cated for replacement object replicas andobjects are con-
currently transferredto multiple new locations. To investi-
gate this behavior, we developed the General OBject Space
(GOBS) simulator. As described below, this simulator al-
lows the rapid evaluation of various combinations of al-
gorithms and techniques used by parallel filesystems, in-
cluding file/object generation, redundancy schemes, object
placement, rebuild mechanisms, and workload impact.

The remainder of this document is organized as follows.
In the next section, we note existing object replica place-
ment schemes and filesystem simulators. In Section 3, we
describe the aspects of the simulated system we intend to
model and measure and describe how this is carried out with
the simulator. In Section 4, we investigate basic behavior of
replica placement schemes and measure the data loss char-
acteristics. In Section 5 we summarize our contributions.

Figure 1. Simulated object storage cluster.

2 Related Work

Hashing has been widely used for data placement as
it eliminates the cost of maintaining global maps for lo-
cating data items, including replicas. Distributed hash ta-
bles (DHTs) provide an interesting background for object
placement algorithms. While most of the schemes con-
sidered here are literally DHTs, the term typically implies
systems designed for Internet-based storage systems, with
correspondingly large scale and low reliability of individual
components. Notable file systems built on DHTs including
PAST [10] and FARSITE [7].

Another commonly used replica placement scheme is
chain data placement [3, 5, 10], which first chooses a pri-
mary node through any data placement scheme and then
places replicas on a server adjacent to the primary, that is,
an objectO with identifierx is placed on thek servers with
identifiers closest tox; k is commonly 2 or 3. The chain
placement scheme is used not only in peer-to-peer systems,
such as PAST and CFS, but also multiple distributed filesys-
tems.

While chaining places replicas in a correlated manner,
it can suffer from load imbalance and poor failure recov-
ery time. Recently proposed distributed storage systems,
such as Ceph [11] instead use a pseudo-random replica
placement algorithm. Ceph places objects using the under-
lying Reliable, Autonomic Distributed Object Store (RA-
DOS) [12], which replicates objects using the Replication
Under Scalable Hashing (RUSH) [4] algorithm. Kinesis [6]
achieves balanced utilization of storage and network re-
sources using three design features: partition of servers into
k disjoint segments; freedom of choice to allocate a server
to store and retrieve data based on current system availabil-
ity; and independent, pseudo-random spread of replicas in
the system.

Figure 2. GOBS simulator components.

3 Object Placement Simulation

The GOBS simulator allows for the investigation of stor-
age performance and reliability characteristics, as described
in the Introduction. In particular, it models the behavior of
the storage network at a high level and is generally con-
cerned with the emergent characteristics of object place-
ment and movement for large numbers of large objects in
a cluster of on the order of 1,000 storage nodes.

The simulated system is represented in Figure 1. At the
top are client operations such as the insertion and location
of objects, as well as simulated read/write operations, since
the object of our investigation is ultimately on user expe-
rience with the simulated system. Next, the global man-
agement infrastructure is represented, including the object
placement mechanism, rebuild management, and metadata
such as filesystem abstractions. The GOBS simulator does
not model control operations or metadata management ex-
plicitly. At the base, the collection of storage nodes is mod-
eled.

Other simulator components are represented in Figure 2.
At the top level are the desired outputs, including functional
statistics, logs, and graphical plot output. The central mech-
anisms of the simulator include the Workload Driver, which
models user operations, the Rebuild Engine, which mod-
els fault-triggered operations, and the fault model based
on mean-time-to-failure estimates (MTTF) as modeled by
an exponential distribution. At the bottom are the extensi-
ble components, including the file/object generation mecha-
nism, and the replica placement schemes. Use cases may be
generated using simple techniques or by interpolating com-
plex distributions such as those given by published studies.

This paper focuses on the effects of modifying the replica
location algorithm on the performance of rebuild operations
after a fault. Rebuilds are simulated in a coarse-grained
manner: data tranfer times are approximated by dividing
the total data size by the data rate achievable on the storage
hardware in use; computation, metadata and control oper-
ations are not considered. Upon replica loss, the required

2

Figure 3. Rebuild load maximum when replica
is pulled from primary node.

Figure 4. Rebuild load maximum when replica
is pulled from random node.

object copy operations are tabulated and randomly sched-
uled. Copy operations are issued immediately as storage
devices become available to perform them, and no device is
involved in more than one transfer at a time.

4 Simulator Results

In this section, we demonstrate the utility of the simula-
tor as applied to the replica chaining method. First, we use
the simulator to perform rebuilds after a storage fault and
identify the concurrency available under algorithmic varia-
tions. Next, we run the simulator over a long timescale and
produce overall rebuild traffic patterns and the typical traf-
fic pattern local to a rebuild, again under algorithmic vari-
ations. Then, we show that the simulator can estimate user
data object loss rates, given a per-disk MTTF estimate and

Figure 5. Rebuild load maximum when replica
is pulled from last node in replica chain.

a placement algorithm.

4.1 System Model

The system modeled in this study is designed as follows.
The basic storage element is the storage server node, which
has an address in the object address space. Each node con-
tains multiple local RAID arrays of 30 TB disks. The unit of
failure is a whole RAID array; individual disk failures and
the performance impact of the resulting local RAID rebuild
is not modeled. RAID arrays fail in accordance with the ba-
sic reliability formula [2]. Disks read and write data at 400
MB/s, the device transfer rate is the disk rate multiplied by
the performance boost offered by RAID. The whole system
stores approximately 1 EB (exabyte) of user data objects.

The placement algorithm considered here is a chain
placement algorithm. TheNEAREST algorithm placesR
replicas of objectx on the nodessr such that|x − sr| is
minimized. TheXOR algorithm placesR replicas such that
x xor sr is minimized [7]. Upon the loss of a RAID ar-
ray, each node applies the placement algorithm to determine
which objects that it holds must be copied to restore the
nominal redundancy level. Replicas are then copied in con-
tinuous time; a given RAID array is involved in only one
copy at a time. The single closest server tox is theprimary
node forx, the other replicas aresecondaries.

4.2 Rebuild Hot Spots

Figures 3, 4, and 5 diagram the bottleneck in rebuild con-
currency under both algorithms at redundancy levelsR = 3

andR = 4. In these cases, the simple∼1 EB filesystem
is deployed onto a simulated storage network containing
node.count nodes, and the loss of a single RAID array

3

is simulated. The rebuild response is initiated immediately
upon the (instantaneous) global detection of the fault; the
system does not wait for the insertion of a new disk.

The loss of a local RAID array causes the loss of the
local replica of each object stored on that array. Thus, data
movement is triggered on server nodes that hold the remain-
ing replicas for these replicas. If an additional RAID array
is available on the same node, object data will be copied
from a neighbor node to the remaining array. If no arrays
are operational, the objects are and copied to other available
server nodes. For each node count on thex-axis, the frac-
tion of the rebuild workload (reads and writes) performed
by the maximally loaded server node is reported, averaged
over 10 runs.

In Figure 3, the replica is always copied from the pri-
mary node, simulating a case in which the system prefers to
control the consistency of the contents of each object at the
primary. The case in which a replica may be copied from
any secondary node is considered in Figure 4, and the case
in which the last replica in the chain must be the replica
source is covered in Figure 5. Note that in these cases the
local storage layout and object count does not affect the re-
sult.

Each node participating in the rebuild performs some
read and write operations to move data to the node that lost
the replicas. For each node count on thex-axis, the fraction
of the rebuild workload (reads and writes) performed by the
maximally loaded server node is reported, averaged over 10
runs.

Although each case shows considerable variation be-
cause of the varying circumstances of the rebuild, available
rebuild concurrency in the chaining algorithm is limited by
the number of replicas. The objects involved are tightly
clustered in the address space, constraining the rebuild pro-
cess to a small number of nodes.

4.3 Rebuild Distributions

Figures 6, 7, and 8 diagram the same basic fault con-
ditions as the previous series of figures but show the load
performed by each node involved in the rebuild. Only the
system with 600 server nodes is considered. The nodes are
ordered by load level; the load fraction for node 0 is the
average workload fraction performed by the most heavily
loaded node, node 1 is the next heavily loaded node, etc.,
until no more work is distributed to server nodes.

This shows that bothNEAREST andXOR produce the
expected high workload concentration near the site of the
data loss, and the workload trails off for nodes farther from
the fault site. The slope of the workload curves indicates
that some work may be distributed but that the central nodes
(node 0, etc.) will act as a bottleneck and cause a “long tail”
effect. Thus, the redundancy level will be restored piece-

Figure 6. Rebuild load maximum when replica
is pulled from primary node.

Figure 7. Rebuild load maximum when replica
is pulled from random node.

Figure 8. Rebuild load maximum when replica
is pulled from last node in replica chain.

4

meal over time. The impact of this differentiated concur-
rency is considered in the following experiments. Addition-
ally, as shown, the use of additional replicas increases the
ability of the system to distribute work to more nodes.

4.4 Rebuild Traffic

We now investigate the impact of the non-trivial re-
build completion behavior on long timescale simulations in
the presence of potentially overlapping storage faults. As
shown in Figure 9, the system of interest to this investiga-
tion is regularly in a state of replica repair. This figure dia-
grams a 1 EB storage system serving data from nodes with
4 RAID arrays, each configured as RAID-5 (4+1). The in-
dividual disk MTTF was 10 years. The mean time to disk
reinsertion was 1 day.

In Figure 10, we show average available rebuild concur-
rency in the hours following the fault for this system. The
two configurations include a SAN-like system (“san”) with
8 RAID arrays per node configured as RAID-6 (8+2) with 2
replicas per object (R = 2) and a cluster-like system (“tar-
get”) with 4 RAID arrays per node configured as RAID-5
(4+1). We ran the system in “active” response mode (dis-
tributed sparing), in which the system immediately started
making copies in response to a fault, and “latent” response
mode, in which the system waited for the faulty disk to be
replaced before scheduling replica copies.

As shown, the active mode makes many additional
copies compared to the latent mode. This includes copies
that are made in direct response to the fault in addition to
copies to the new empty disk, as well as intermediate copies
that may be made as a result of subsequent faults. The ac-
tive mode is shown to be capable of quickly making use of
high object transfer concurrency to reduce the window of
vulnerability at the cost of greater network and disk load.

Additionally, there is a notable correspondence between
the workload distribution and the ability of the system to
sustain concurrent data transfers over time. In the chaining
scheme used here, the nodes that are peripherally involved
in the rebuild run out of work to do, so the concurrency
level decreases over time. In a system with many consec-
utive, overlapping disk failures, this behavior could havea
significant effect on data loss.

4.5 Potential for Data Loss

In this final case, we look at the ability of the simulator to
estimate the number of user data objects lost per year given
an algorithm and a per-disk MTTF. In this test, we inserted
the user objects and applied the methods from the previous
subsection, varying the per-disk MTTF over a range of un-
realistically low MTTF values. The quantity of data loss
was measured on a per-object basis for the one year runs.

As shown in Figure 11, data loss is unlikely unless the
per-disk MTTF is set to an extremely low value of less than
one year. Somewhat surprisingly, the “active” method loses
more objects than the “latent” method. It is difficult to gen-
eralize about such rare cases even with the traces from the
simulator but it may be the case that the extra work caused
by the “active” method has the potential to overload the
servers at certain critical times.

5 Summary

As object placement routines become more complex and
storage systems add ever more component devices, the need
to analyze the behavior of the overall system becomes more
pronounced. To address this need, we have presented the
design of a coarse-grained simulator to quickly evaluate the
ability of an algorithm and its variations on a simulated

Figure 9. Long timescale rebuild traffic report.

5

Figure 10. Average rebuild concurrency over
time.

Figure 11. Data loss rate for varying (ex-
tremely low) per-disk MTTFs.

large scale filesystem. w demonstrate the simulator’s abil-
ity to extract meaningful results including limits to concur-
rency during rebuilds (§4.2), work distribution during re-
builds (§4.3), rebuild-centered traffic patterns (§4.4), and
the data loss rate (§4.5).

The utility of the simulator and its results stand to be
improved. First, the network model could be improved by
making use of a congestion model, preferably above the
packet level. Second, it could be integrated with a more
complex local storage model that provides useful, coarse-
grained performance approximations for disks, RAID de-
vices, and the local object storage service. Third, additional
implementations of other well-known placement algorithms
should be produced so that the community can run the var-
ious algorithms with modifications on simulated systems.
The software will be released under an open source license.

6 Acknowledgments

This research is supported by the Office of Advanced
Scientific Computing Research, Office of Science, U.S.
Dept. of Energy under Contracts DE-AC02-06CH11357.
Work is also supported by DOE with agreement number
DE-FC02-06ER25777.

References

[1] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos,
P. Maniatis, T. J. Giuli, and P. Bungale. A fresh look at the
reliability of long term digital storage. InEuroSys, 2006.

[2] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High performance, reliable secondary
storage.ACM Computing Surveys, 26(2), 1994.

[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. InProc. Sym-
posium on Operating Systems Principles, 2001.

[4] R. J. Honicky and E. L. Miller. A fast algorithm for online
placement and reorganization of replicated data. InProc. In-
ternational Parallel and Distributed Processing Symposium,
2004.

[5] H.-I. Hsiao and D. J. DeWitt. Chained declustering: A
new availability strategy for multiprocessor database ma-
chines. InProc. International Conference on Data Engi-
neering, 1990.

[6] J. MacCormick, N. Murphy, V. Ramasubramanian,
U. Wieder, J. Yang, and L. Zhou. Kinesis: A new approach
to replica placement in distributed storage systems.ACM
Transactions on Storage, 4(4), 2009.

[7] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-
peer information system based on the XOR metric. InProc.
Workshop on Peer-to-peer Systems, 2002.

[8] Peter Kogge et. al. Exascale computing study: Technology
challenges in achieving exascale systems. DARPA Informa-
tion Processing Techniques Office, 2008.

[9] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends
in a large disk drive population. InProc. USENIX Confer-
ence on File and Storage Technologies, 2007.

[10] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. SIGOPS Operating System Review, 35(5), 2001.

[11] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance dis-
tributed file system. InProc. Operating Systems Design and
Implementation, 2006.

[12] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn.
RADOS: A scalable, reliable storage service for petabyte-
scale storage clusters. InProc. Petascale Data Storage
Workshop, 2007.

6

